Differential glycation of arginine and lysine by glucose and inhibition by acesulfame potassium

dc.contributor.authorAhire, Komal
dc.contributor.authorKumar, Dinesh
dc.contributor.authorAli, Ahmad
dc.date.accessioned2024-11-23T10:22:58Z
dc.date.available2024-11-23T10:22:58Z
dc.date.issued2018-11-06
dc.description.abstractGlycation is a non-enzymatic process between the reactive carbonyl group of sugars and free amino groups of proteins especially arginine and lysine residues. This process leads to formation of a group of compounds called as Amadori products and advanced glycation products. These products have been implicated in many secondary complications of diabetes. In last few years the intake of sweetener has increased for various health reasons like control of hyperglycaemia and obesity. The present study was designed to evaluate the effect of Acesulfame-K, a well-known and widely used sweetener, on glycation system of arginine-glucose and lysine-glucose. The amount of glycation products generated in the presence and absence of acesulfame potassium was measured by established methods such as browning, Fructosamine assay, and determination of carbonyl content. The effect of acesulfame potassium was also checked on the glycation of DNA by agarose gel electrophoresis method. The results indicate that lysine is more potent in causing glycation as compared to arginine. Acesulfame potassium could significantly decrease the amount of glycation products in the glycation systems, arginine-glucose and lysine-glucose. It can be concluded that Acesulfame-K has anti-glycation potential as it decreased formation of Amadori products and AGEs. This study is significant in understanding the role of artificial sweetener in the process of glycation.
dc.identifier.issn1314-6246
dc.identifier.urihttps://doi.uni-plovdiv.bg/handle/store/412
dc.language.isoen
dc.publisherPlovdiv University Press “Paisii Hilendarski”
dc.subjectAmadori products
dc.subjectAdvanced glycation end products (AGEs)
dc.subjectartificial sweetener
dc.subjectAcesulfame-K
dc.subjectDNA damage
dc.titleDifferential glycation of arginine and lysine by glucose and inhibition by acesulfame potassium
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
jbb20181011.pdf
Size:
951.63 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
73 B
Format:
Item-specific license agreed to upon submission
Description: